Ad
related to: dna polymerase activity
Search results
Results From The WOW.Com Content Network
A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from ... accounting for >95% of polymerase activity in E. coli; yet ...
DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication.Discovered by Arthur Kornberg in 1956, [1] it was the first known DNA polymerase (and the first known of any kind of polymerase).
DNA polymerase III synthesizes base pairs at a rate of around 1000 nucleotides per second. [3] DNA Pol III activity begins after strand separation at the origin of replication. Because DNA synthesis cannot start de novo, an RNA primer, complementary to part of the single-stranded DNA, is synthesized by primase (an RNA polymerase): [citation ...
In addition to 5'→3' polymerase activity, the bacterial thermostable DNA polymerases (belonging to the A-type DNA polymerases) have 5'→3' exonuclease activity and generate an adenosine overhang (sticky ends) at the 3' end of the newly generated strand.
DNA polymerase I also has 3' to 5' and 5' to 3' exonuclease activity, which is used in editing and proofreading DNA for errors. The 3' to 5' can only remove one mononucleotide at a time, and the 5' to 3' activity can remove mononucleotides or up to 10 nucleotides at a time.
Taq polymerase exonuclease is a domain found in the amino-terminal of Taq DNA polymerase I (thermostable). It assumes a ribonuclease H-like motif. The domain confers 5'-3' exonuclease activity to the polymerase. [17]
DNA polymerase alpha also known as Pol α is an enzyme complex found in eukaryotes that is involved in initiation of DNA replication. The DNA polymerase alpha complex consists of 4 subunits: POLA1, POLA2, PRIM1, and PRIM2. [2] Pol α has limited processivity and lacks 3′ exonuclease activity for proofreading errors.
The polymerase is a monomeric protein with two distinct functional domains. Site-directed mutagenesis experiments support the proposition that this protein displays a structural and functional similarity to the Klenow fragment of the Escherichia coli Polymerase I enzyme; [3] it comprises a C-terminal polymerase domain and a spatially separated N-terminal domain with a 3'-5' exonuclease activity.