Ads
related to: why is a capacitor used
Search results
Results From The WOW.Com Content Network
The energy stored in a capacitor can be used to represent information, either in binary form, as in DRAMs, or in analogue form, as in analog sampled filters and CCDs. Capacitors can be used in analog circuits as components of integrators or more complex filters and in negative feedback loop stabilization.
Capacitors used in RF or sustained high-current applications can overheat, especially in the center of the capacitor rolls. Capacitors used within high-energy capacitor banks can violently explode when a short in one capacitor causes sudden dumping of energy stored in the rest of the bank into the failing unit.
A 440-volt capacitor can be used in place of a 370-volt, but not a 370-volt in place of a 440-volt. [2] The capacitance must remain within 5% of its original value. [2] Round cylinder-shaped dual run capacitors are commonly used for air conditioning, to help in the starting of the compressor and the condenser fan motor. [2]
A capacitor can also act as an AC resistor. aluminium electrolytic capacitors in particular are often used as decoupling capacitors to filter or bypass undesired AC frequencies to ground or for capacitive coupling of audio AC signals. Then the dielectric is used only for blocking DC.
Capacitors for AC applications are primarily film capacitors, metallized paper capacitors, ceramic capacitors and bipolar electrolytic capacitors. The rated AC load for an AC capacitor is the maximum sinusoidal effective AC current (rms) which may be applied continuously to a capacitor within the specified temperature range.
A bypass capacitor is often used to decouple a subcircuit from AC signals or voltage spikes on a power supply or other line. A bypass capacitor can shunt energy from those signals, or transients, past the subcircuit to be decoupled, right to the return path. For a power supply line, a bypass capacitor from the supply voltage line to the power ...
The different ceramic materials used for ceramic capacitors, paraelectric or ferroelectric ceramics, influences the electrical characteristics of the capacitors. Using mixtures of paraelectric substances based on titanium dioxide results in very stable and linear behavior of the capacitance value within a specified temperature range and low losses at high frequencies.
The capacitance of the majority of capacitors used in electronic circuits is generally several orders of magnitude smaller than the farad. The most common units of capacitance are the microfarad (μF), nanofarad (nF), picofarad (pF), and, in microcircuits, femtofarad (fF).