Ads
related to: sensorless vector control vfd
Search results
Results From The WOW.Com Content Network
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...
Direct torque control (DTC) is one method used in variable-frequency drives to control the torque (and thus finally the speed) of three-phase AC electric motors.This involves calculating an estimate of the motor's magnetic flux and torque based on the measured voltage and current of the motor.
AC VFD AC VFD AC VFD AC VFD Control platform Brush type DC V/Hz control Vector control Vector control Vector control Control criteria Closed-loop Open-loop Open-loop Closed-loop Open-loop w. HFI^ Motor DC IM IM IM Interior PM; Typical speed regulation (%) 0.01: 1: 0.5: 0.01: 0.02 Typical speed range at constant torque (%) 0–100: 10–100: 3 ...
V/Hz control is also sometimes referred to as scalar control or variable voltage, variable frequency (VVVF) control. Higher performance load applications are increasingly been been used for AC drives with multi-level and cellular inverter topologies and closed loop and sensorless vector or DTC control. [3].
A variable frequency drive (VFD) or variable speed drive (VSD) describes the electronic portion of the system that controls the speed of the motor. More generally, the term drive, describes equipment used to control the speed of machinery. Many industrial processes such as assembly lines must operate at different speeds for different products.
A permanent magnet synchronous motor and reluctance motor requires a control system for operating (VFD or servo drive). There is a large number of control methods for synchronous machines, selected depending on the construction of the electric motor and the scope. Control methods can be divided into: [21] [22] Scalar control. V/f control ...
The control of flux can be easily achieved through the direct torque control principle. With DTC the inverter is directly controlled to achieve the desired torque and flux for the motor. During flux braking the motor is under DTC control which guarantees that braking can be made according to the specified speed ramp.
Variable frequency drives implement the scalar or vector control of an induction motor. With scalar control, only the magnitude and frequency of the supply voltage are controlled without phase control (absent feedback by rotor position). Scalar control is suitable for application where the load is constant.