Search results
Results From The WOW.Com Content Network
For example, a diode with a Zener breakdown voltage of 3.2 V exhibits a voltage drop of very nearly 3.2 V across a wide range of reverse currents. The Zener diode is therefore well suited for applications such as the generation of a reference voltage (e.g. for an amplifier stage), or as a voltage stabilizer for low-current applications. [2]
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
Zener diode based noise source. A noise generator is a circuit that produces electrical noise (i.e., a random signal). Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters. Noise generators are also used for generating random numbers. [1]
In the Zener diode, the concept of PIV is not applicable. A Zener diode contains a heavily doped p–n junction allowing electrons to tunnel from the valence band of the p-type material to the conduction band of the n-type material, such that the reverse voltage is "clamped" to a known value (called the Zener voltage), and avalanche does not ...
For simplicity, diodes may sometimes be assumed to have no voltage drop or resistance when forward-biased and infinite resistance when reverse-biased. But real diodes are better approximated by the Shockley diode equation, which has an more complicated exponential current–voltage relationship called the diode law.
These diodes can indefinitely sustain a moderate level of current during breakdown. The voltage at which the breakdown occurs is called the breakdown voltage . There is a hysteresis effect; once avalanche breakdown has occurred, the material will continue to conduct even if the voltage across it drops below the breakdown voltage.
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
Zener can refer to: . Zener diode, a type of electronic diode; Zener effect, a type of electrical breakdown which is employed in a Zener diode; Zener pinning, the influence of a dispersion of fine particles on the movement of low- and high angle grain boundaries through a polycrystalline material