When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),

  3. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    Relations for other moduli are found in the (λ, G) row of the conversions table at the end of this article. Although the shear modulus, μ, must be positive, the Lamé's first parameter, λ, can be negative, in principle; however, for most materials it is also positive. The parameters are named after Gabriel Lamé.

  4. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The shear modulus or modulus of rigidity (G or Lamé second parameter) describes an object's tendency to shear (the deformation of shape at constant volume) when acted upon by opposing forces; it is defined as shear stress over shear strain. The shear modulus is part of the derivation of viscosity.

  5. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    For instance, Young's modulus applies to extension/compression of a body, whereas the shear modulus applies to its shear. [1] Young's modulus and shear modulus are only for solids, whereas the bulk modulus is for solids, liquids, and gases. The elasticity of materials is described by a stress–strain curve, which shows the relation between ...

  6. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  7. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    G is the modulus of rigidity (shear modulus) of the material J is the torsional constant. Inverting the previous relation, we can define two quantities; the torsional rigidity, = with SI units N⋅m 2 /rad. And the torsional stiffness,

  8. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [1] [2] Other names are elastic modulus tensor and stiffness tensor. Common symbols include and . The defining equation can be written as =

  9. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...