Search results
Results From The WOW.Com Content Network
Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].
In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.
When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.
This proposition is (sometimes) known as the law of the unconscious statistician because of a purported tendency to think of the aforementioned law as the very definition of the expected value of a function g(X) and a random variable X, rather than (more formally) as a consequence of the true definition of expected value. [1]
Similarly, if a submartingale and a martingale have equivalent expectations for a given time, the history of the submartingale tends to be bounded above by the history of the martingale. Roughly speaking, the prefix "sub-" is consistent because the current observation X n is less than (or equal to) the conditional expectation E[X n +1 | X 1 ...
A college student just solved a seemingly paradoxical math problem—and the answer came from an incredibly unlikely place. Skip to main content. 24/7 Help. For premium support please call: 800 ...
This definition for a known, computed quantity differs from the above definition for the computed MSE of a predictor, in that a different denominator is used. The denominator is the sample size reduced by the number of model parameters estimated from the same data, ( n − p ) for p regressors or ( n − p −1) if an intercept is used (see ...
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then