When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  3. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    The name "valence band" was coined by analogy to chemistry, since in semiconductors (and insulators) the valence band is built out of the valence orbitals. In a metal or semimetal, the Fermi level is inside of one or more allowed bands. In semimetals the bands are usually referred to as "conduction band" or "valence band" depending on whether ...

  4. Anderson's rule - Wikipedia

    en.wikipedia.org/wiki/Anderson's_rule

    The band gap (usually given the symbol ) gives the energy difference between the lower edge of the conduction band and the upper edge of the valence band. Each semiconductor has different electron affinity and band gap values. For semiconductor alloys it may be necessary to use Vegard's law to calculate these values.

  5. Band offset - Wikipedia

    en.wikipedia.org/wiki/Band_offset

    The band gap difference ΔEg = Eg(A) - Eg(B) is distributed between the two discontinuities,ΔEv, and ΔEc$. In alignments, it is generally the case that the conduction band which has the higher energy minimum will bend upward, whilst the valence band which has the lower energy maximum will bend upward.

  6. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    The term "band gap" refers to the energy difference between the top of the valence band and the bottom of the conduction band. Electrons are able to jump from one band to another. However, in order for a valence band electron to be promoted to the conduction band, it requires a specific minimum amount of energy for the transition.

  7. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    The band gap is called "direct" if the crystal momentum of electrons and holes is the same in both the conduction band and the valence band; an electron can directly emit a photon. In an "indirect" gap, a photon cannot be emitted because the electron must pass through an intermediate state and transfer momentum to the crystal lattice.

  8. Band bending - Wikipedia

    en.wikipedia.org/wiki/Band_bending

    For intrinsic semiconductors (undoped), the valence band is fully filled with electrons, whilst the conduction band is completely empty. The Fermi level is thus located in the middle of the band gap, the same as that of the surface states, and hence there is no charge transfer between the bulk and the surface. As a result no band bending occurs.

  9. Edge states - Wikipedia

    en.wikipedia.org/wiki/Edge_states

    Based on the energy eigenvalues, conduction band are the high energy states (E>0) while valence bands are the low energy states (E<0). In some materials, for example, in graphene and zigzag graphene quantum dot, there exists the energy states having energy eigenvalues exactly equal to zero (E=0) besides the conduction and valence bands. These ...