When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  3. Predictive value of tests - Wikipedia

    en.wikipedia.org/wiki/Predictive_value_of_tests

    Predictive value of tests is the probability of a target condition given by the result of a test, [1] often in regard to medical tests.. In cases where binary classification can be applied to the test results, such yes versus no, test target (such as a substance, symptom or sign) being present versus absent, or either a positive or negative test), then each of the two outcomes has a separate ...

  4. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  5. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    Positive and negative predictive values, but not sensitivity or specificity, are values influenced by the prevalence of disease in the population that is being tested. These concepts are illustrated graphically in this applet Bayesian clinical diagnostic model which show the positive and negative predictive values as a function of the ...

  6. Negative log predictive density - Wikipedia

    en.wikipedia.org/wiki/Negative_log_predictive...

    A smaller value is better. Importantly the NLPD assesses the quality of the model's uncertainty quantification. It is used for both regression and classification. To compute: (1) find the probabilities given by the model to the true labels. (2) find the negative log of this product.

  7. Receiver operating characteristic - Wikipedia

    en.wikipedia.org/wiki/Receiver_operating...

    A high ROC AUC, such as 0.9 for example, might correspond to low values of precision and negative predictive value, such as 0.2 and 0.1 in the [0, 1] range. If one performed a binary classification, obtained an ROC AUC of 0.9 and decided to focus only on this metric, they might overoptimistically believe their binary test was excellent.

  8. Template:DiagnosticTesting Diagram - Wikipedia

    en.wikipedia.org/wiki/Template:DiagnosticTesting...

    Positive predictive value (PPV), Precision = ⁠ Σ True positive / Σ Predicted condition positive ⁠ False discovery rate (FDR) = ⁠ Σ False positive / Σ Predicted condition positive ⁠ Predicted condition negative: False negative, Type II error: True negative: False omission rate (FOR) = ⁠ Σ False negative / Σ Predicted condition ...

  9. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    The positive and negative prediction values would be 99%, so there can be high confidence in the result. However, if the prevalence is only 5%, so of the 2000 people only 100 are really sick, then the prediction values change significantly. The likely result is 99 true positives, 1 false negative, 1881 true negatives and 19 false positives.