When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inner ear regeneration - Wikipedia

    en.wikipedia.org/wiki/Inner_Ear_Regeneration

    Proliferating supporting cells can acquire hair cell fate in mitotic division. The mouse's neonatal supporting cells proliferate after hair cell death and regenerate hair cells after damage. [26] The neonatal cochlea is resistant to hair cell damage caused by exposure to noise or drugs, which are toxic to the cochlea, or auditory nerve, in vivo ...

  3. Hair cell - Wikipedia

    en.wikipedia.org/wiki/Hair_cell

    Damage to hair cells can cause damage to the vestibular system and therefore cause difficulties in balancing. However, other vertebrates, such as the frequently studied zebrafish, and birds have hair cells that can regenerate. [5] [6] The human cochlea contains on the order of 3,500 inner hair cells and 12,000 outer hair cells at birth. [7]

  4. Hensen's cell - Wikipedia

    en.wikipedia.org/wiki/Hensen's_cell

    The supporting cells are differentiated from the hair cells, when early embryonic hair cells express ligands that bind to the Notch receptors would prevent them from obtaining the hair cell phenotype, and these cells would differentiate into supporting cells, this is one of the reasons that the supporting cells are able to regenerate new hair ...

  5. Cochlea - Wikipedia

    en.wikipedia.org/wiki/Cochlea

    Hair cells are modified neurons, able to generate action potentials which can be transmitted to other nerve cells. These action potential signals travel through the vestibulocochlear nerve to eventually reach the anterior medulla , where they synapse and are initially processed in the cochlear nuclei .

  6. Organ of Corti - Wikipedia

    en.wikipedia.org/wiki/Organ_of_Corti

    Cross-section through the spiral organ of Corti at greater magnification, showing position of the hair cells on the basement membrane. The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2]

  7. Presbycusis - Wikipedia

    en.wikipedia.org/wiki/Presbycusis

    Age-related hair cell degeneration is characterized by loss of stereocilia, shrinkage of hair cell soma, and reduction in outer hair cell mechanical properties, suggesting that functional decline in mechanotransduction and cochlear amplification precedes hair cell loss and contributes to age-related hearing loss.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Sensorineural hearing loss - Wikipedia

    en.wikipedia.org/wiki/Sensorineural_hearing_loss

    Thus, an increase in firing rate of the auditory neurons connected to the hair cell occurs. On the other hand, the bending of the stereocilia away from the basal body of the OHC causes inhibition of the hair cell. Thus, a decrease in firing rate of the auditory neurons connected to the hair cell occurs.