Search results
Results From The WOW.Com Content Network
Consider the system of equations + + = + + = + + = The coefficient matrix is = [], and the augmented matrix is (|) = []. Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are an infinite number of solutions.
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution , (,,) has the form: (,,) = ([() ()]) / | | / | | /where denotes trace and M is n × p, U is n × n and V is p × p, and the density is understood as the probability density function with respect to the standard Lebesgue measure in , i.e.: the measure corresponding to integration ...
Familiar properties of numbers extend to these operations on matrices: for example, addition is commutative, that is, the matrix sum does not depend on the order of the summands: A + B = B + A. [9] The transpose is compatible with addition and scalar multiplication, as expressed by (cA) T = c(A T) and (A + B) T = A T + B T. Finally, (A T) T = A.
The sum and difference of two symmetric matrices is symmetric. This is not always true for the product: given symmetric matrices and , then is symmetric if and only if and commute, i.e., if =.
In linear algebra, an invertible matrix is a square matrix that has an inverse.In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation.