When.com Web Search

  1. Ads

    related to: intro to geometry powerpoint slides

Search results

  1. Results From The WOW.Com Content Network
  2. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, [a] which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental ...

  3. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .

  4. History of geometry - Wikipedia

    en.wikipedia.org/wiki/History_of_geometry

    In geometry, there was a clear need for a new set of axioms, which would be complete, and which in no way relied on pictures we draw or on our intuition of space. Such axioms, now known as Hilbert's axioms, were given by David Hilbert in 1894 in his dissertation Grundlagen der Geometrie (Foundations of Geometry).

  5. Outline of geometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_geometry

    Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Geometry is one of the oldest mathematical sciences.

  6. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    Algebra (and later, calculus) can thus be used to solve geometrical problems. Geometry was split into two new subfields: synthetic geometry, which uses purely geometrical methods, and analytic geometry, which uses coordinates systemically. [23] Analytic geometry allows the study of curves unrelated to circles and lines.

  7. Birkhoff's axioms - Wikipedia

    en.wikipedia.org/wiki/Birkhoff's_axioms

    These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]