Search results
Results From The WOW.Com Content Network
Two common examples are cellulose, a main component of the cell wall in plants, and starch, a name derived from the Anglo-Saxon stercan, meaning to stiffen. [ 2 ] To name a polysaccharide composed of a single type of monosaccharide, that is a homopolysaccharide, the ending “-ose” of the monosaccharide is replaced with “-an”. [ 3 ]
Liver glycogen stores serve as a store of glucose for use throughout the body, particularly the central nervous system. [4] The human brain consumes approximately 60% of blood glucose in fasted, sedentary individuals. [4] Glycogen is an analogue of starch, a glucose polymer that functions as energy storage in plants.
Glucose-containing compounds are digested and taken up by the body in the intestines, including starch, glycogen, disaccharides and as monosaccharide. Glucose is stored in mainly the liver and muscles as glycogen. It is distributed and utilized in tissues as free glucose. To discuss image, please see Template talk:Human body diagrams
Glycogen is analogous to starch, a glucose polymer in plants, and is sometimes referred to as animal starch, [16] having a similar structure to amylopectin but more extensively branched and compact than starch. Glycogen is a polymer of α(1→4) glycosidic bonds linked with α(1→6)-linked branches.
Glycogen is a highly branched structure, consisting of the core protein Glycogenin, surrounded by branches of glucose units, linked together. [ 2 ] [ 12 ] The branching of glycogen increases its solubility, and allows for a higher number of glucose molecules to be accessible for breakdown at the same time. [ 2 ]
In addition to these two metabolic pathways, glucose 6-phosphate may also be converted to glycogen or starch for storage. This storage is in the liver and muscles in the form of glycogen for most multicellular animals , and in intracellular starch or glycogen granules for most other organisms.
B-type chains, making half of the branches, have two branch points, and all chains have the same length. E. Meléndez-Hevia, R. Meléndez and E. I. Canela (2000) "Glycogen Structure: an Evolutionary View", pp. 319–326 in Technological and Medical Implications of Metabolic Control Analysis (ed. A. Cornish-Bowden and M. L. Cárdenas), Kluwer Academic Publishers, Dordrecht
For example, cellulose is an unbranched homopolysaccharide made up of glucose monomers connected via beta-glycosidic linkages; glycogen is a branched form, where the glucose monomers are joined by alpha-glycosidic linkages. Depending upon the molecules attached that are of the following types: