When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    In case I, the exponent 5 does not divide the product xyz. In case II, 5 does divide xyz. Case I for n = 5 can be proven immediately by Sophie Germain's theorem(1823) if the auxiliary prime θ = 11. Case II is divided into the two cases (cases II(i) and II(ii)) by Dirichlet in 1825. Case II(i) is the case which one of x, y, z is divided by ...

  3. Like terms - Wikipedia

    en.wikipedia.org/wiki/Like_terms

    Terms are within the same expression and are combined by either addition or subtraction. For example, take the expression: + There are two terms in this expression. Notice that the two terms have a common factor, that is, both terms have an . This means that the common factor variable can be factored out, resulting in

  4. Cancelling out - Wikipedia

    en.wikipedia.org/wiki/Cancelling_out

    For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a × b = a × c , then the multiplicative term a can be canceled out if a ≠0, resulting in the equivalent expression b = c ; this is equivalent to dividing through by a .

  5. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  6. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    The quotient and remainder can then be determined as follows: Divide the first term of the dividend by the highest term of the divisor (meaning the one with the highest power of x, which in this case is x). Place the result above the bar (x 3 ÷ x = x 2).

  7. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...

  8. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!

  9. Polynomial expansion - Wikipedia

    en.wikipedia.org/wiki/Polynomial_expansion

    In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...