Search results
Results From The WOW.Com Content Network
"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system." [1]: 38 The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers. [1]
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Hicksian demand functions are often convenient for mathematical manipulation because they do not require representing income or wealth. Additionally, the function to be minimized is linear in the , which gives a simpler optimization problem.
In theoretical and computational chemistry, a basis set is a set of functions (called basis functions) that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.
Common quantum logic gates by name (including abbreviation), circuit form(s) and the corresponding unitary matrices. In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits.
In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors .
The exact origins of the LTE lemma are unclear; the result, with its present name and form, has only come into focus within the last 10 to 20 years. [1] However, several key ideas used in its proof were known to Gauss and referenced in his Disquisitiones Arithmeticae. [2]
An orthogonal basis of spherical harmonics in higher dimensions can be constructed inductively by the method of separation of variables, by solving the Sturm-Liouville problem for the spherical Laplacian = + where φ is the axial coordinate in a spherical coordinate system on S n−1.