When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.

  3. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution A mass-radius plot ...

  4. CNO cycle - Wikipedia

    en.wikipedia.org/wiki/CNO_cycle

    During a star's evolution, convective mixing episodes moves material, within which the CNO cycle has operated, from the star's interior to the surface, altering the observed composition of the star. Red giant stars are observed to have lower carbon-12/carbon-13 and carbon-12/nitrogen-14 ratios than do main sequence stars, which is considered to ...

  5. Stellar core - Wikipedia

    en.wikipedia.org/wiki/Stellar_core

    A stellar core is the extremely hot, dense region at the center of a star. For an ordinary main sequence star, the core region is the volume where the temperature and pressure conditions allow for energy production through thermonuclear fusion of hydrogen into helium .

  6. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ...

  7. Horizontal branch - Wikipedia

    en.wikipedia.org/wiki/Horizontal_branch

    The horizontal branch (HB) is a stage of stellar evolution that immediately follows the red-giant branch in stars whose masses are similar to the Sun's. Horizontal-branch stars are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen fusion (via the CNO cycle) in a shell surrounding the core.

  8. Silicon-burning process - Wikipedia

    en.wikipedia.org/wiki/Silicon-burning_process

    In astrophysics, silicon burning is a very brief [1] sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8–11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the fuels that power them for their long lives in the main sequence on the Hertzsprung–Russell diagram.

  9. Dredge-up - Wikipedia

    en.wikipedia.org/wiki/Dredge-up

    The counter-intuitive existence of lithium-rich red giant stars that have gone through first dredge-up may be explained by scenarios such as mass transfer. [1] The second dredge-up The second dredge-up occurs in stars with 4–8 solar masses. When helium fusion comes to an end at the core, convection mixes the products of the CNO cycle. [2]