Search results
Results From The WOW.Com Content Network
Steam's starting pressure and temperature is the same for both the actual and the ideal turbines, but at turbine exit, steam's energy content ('specific enthalpy') for the actual turbine is greater than that for the ideal turbine because of irreversibility in the actual turbine.
The Ljungström turbine (Ljungströmturbinen) is a steam turbine. It is also known as the STAL turbine, from the company name STAL ( Swedish : Svenska Turbinfabriks Aktiebolaget Ljungström ). The technology has had numerous uses since its conception, from power plants to vehicles as large as the supertanker Seawise Giant .
It will supply a new low-pressure turbine, complete inner part of the high-pressure turbine, valves, generator and spare parts as required. [6] At Finland's Hanasaari heating plant, Doosan Škoda Power is currently modernising the existing Škoda back-pressure steam turbine, adding 3D blading rotors and new diaphragms, inner casings and turning ...
A steam turbine with the case opened Humming of a small pneumatic turbine used in a German 1940s-vintage safety lamp. A turbine (/ ˈ t ɜːr b aɪ n / or / ˈ t ɜːr b ɪ n /) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) [1] [2] is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work.
The exit steam from one turbine is made to enter the nozzle of the succeeding turbine. Each of the simple impulse turbines would then be termed a "stage" of the turbine. Each stage comprises its ring of nozzle and blades. The steam from the boiler passes through the first nozzle ring, where its pressure drops and velocity increases. [2]
Heat energy is supplied to the system via a boiler where the working fluid (typically water) is converted to a high-pressure gaseous state (steam) in order to turn a turbine. After passing over the turbine the fluid is allowed to condense back into a liquid state as waste heat energy is rejected before being returned to boiler, completing the ...
An important point to note here is that the inlet steam velocities to each stage of moving blades are essentially equal. It is because the velocity corresponds to the lowering of the pressure. Since, in a pressure compounded steam turbine, only a part of the steam is expanded in each nozzle. The steam velocity is lower than in the previous case.
A steam turbine often exhausts into a surface condenser that provides a vacuum. The stages of a steam turbine are typically arranged to extract the maximum potential work from a specific velocity and pressure of steam, giving rise to a series of variably sized high- and low-pressure stages.