Search results
Results From The WOW.Com Content Network
The geometric mean of a data set is less than the data set's arithmetic mean unless all members of the data set are equal, in which case the geometric and arithmetic means are equal. This allows the definition of the arithmetic-geometric mean, an intersection of the two which always lies in between.
A viral titer is the lowest concentration of a virus that still infects cells. To determine the titer, several dilutions are prepared, such as 10 −1, 10 −2, 10 −3, ... 10 −8. [1] The titer of a fat is the temperature, in degrees Celsius, at which it solidifies. [4] The higher the titer, the harder the fat.
The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:
Seroconversion is defined as an increase in HI (Hemagglutination-Inhibition) antibody titer of at least 4-fold, with a minimum post-vaccination HI titer of 1:40. I believe this refers to results from a Viral Hemagglutination Assay
In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then
The mean is the geometric when they are such that as the first is to the second, so the second is to the third. Of these terms the greater and the lesser have the interval between them equal. Subcontrary, which we call harmonic, is the mean when they are such that, by whatever part of itself the first term exceeds the second, by that part of ...
In mathematics, the arithmetic–geometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential , trigonometric functions , and other special functions , as well as some ...
Statistical shape analysis is an analysis of the geometrical properties of some given set of shapes by statistical methods. For instance, it could be used to quantify differences between male and female gorilla skull shapes, normal and pathological bone shapes, leaf outlines with and without herbivory by insects, etc. Important aspects of shape analysis are to obtain a measure of distance ...