Search results
Results From The WOW.Com Content Network
If the universe started with even slightly different temperatures in different places, the CMB should not be isotropic unless there is a mechanism that evens out the temperature by the time of decoupling. In reality, the CMB has the same temperature in the entire sky, 2.726 ± 0.001 K. [3]
The comoving distance from Earth to the edge of the observable universe is about 14.26 gigaparsecs (46.5 billion light-years or 4.40 × 10 26 m) in any direction. The observable universe is thus a sphere with a diameter of about 28.5 gigaparsecs [27] (93 billion light-years or 8.8 × 10 26 m). [28]
It represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, as in the Hubble horizon, but rather the speed of light ...
Hence, it is unclear whether the observable universe matches the entire universe or is significantly smaller, though it is generally accepted that the universe is larger than the observable universe. The universe may be compact in some dimensions and not in others, similar to how a cuboid [citation needed] is longer in one dimension than the ...
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
The image was an adaptation from various generic charts depicting the growth of the size of the observable universe, for both the standard model and inflationary model respectively, of the Big Bang theory. The early, hot universe appears to be well explained by the Big Bang from roughly 10 −33 seconds onwards, but there are several problems.
In cosmology, the anthropic principle, also known as the observation selection effect, is the proposition that the range of possible observations that could be made about the universe is limited by the fact that observations are only possible in the type of universe that is capable of developing observers in the first place.
Rather, the conformal time is the amount of time it would take a photon to travel from where we are located to the furthest observable distance, provided the universe ceased expanding. As such, η 0 {\displaystyle \eta _{0}} is not a physically meaningful time (this much time has not yet actually passed); though, as we will see, the particle ...