Search results
Results From The WOW.Com Content Network
Sequence analysis tasks are often non-trivial to resolve and require the use of relatively complex approaches, many of which are the backbone behind many existing sequence analysis tools. Of the many methods used in practice, the most popular include the following: Dynamic programming; Artificial neural network; Hidden Markov model; Support ...
De novo protein structure prediction methods attempt to predict tertiary structures from sequences based on general principles that govern protein folding energetics and/or statistical tendencies of conformational features that native structures acquire, without the use of explicit templates. Research into de novo structure prediction has been ...
the linear amino acid sequence of a protein, which chemically is a polypeptide chain composed of amino acids joined by peptide bonds. Profile (sequence context) a scoring matrix that represents a multiple sequence alignment of a protein family. The profile is usually obtained from a well-conserved region in a multiple sequence alignment.
Protein sequence interpretation: a scheme new protein to be engineered in a yeast. It is often desirable to know the unordered amino acid composition of a protein prior to attempting to find the ordered sequence, as this knowledge can be used to facilitate the discovery of errors in the sequencing process or to distinguish between ambiguous results.
Completed genome sequences allow every open reading frame (ORF), the part of a gene that is likely to contain the sequence for the messenger RNA and protein, to be cloned and expressed as protein. These proteins are then purified and crystallized, and then subjected to one of two types of structure determination: X-ray crystallography and ...
The Chou–Fasman method predicts helices and strands in a similar fashion, first searching linearly through the sequence for a "nucleation" region of high helix or strand probability and then extending the region until a subsequent four-residue window carries a probability of less than 1.
Structural superposition is commonly used to compare multiple conformations of the same protein (in which case no alignment is necessary, since the sequences are the same) and to evaluate the quality of alignments produced using only sequence information between two or more sequences whose structures are known.
Homology model of the DHRS7B protein created with Swiss-model and rendered with PyMOL. Homology modeling, also known as comparative modeling of protein, refers to constructing an atomic-resolution model of the "target" protein from its amino acid sequence and an experimental three-dimensional structure of a related homologous protein (the "template").