When.com Web Search

  1. Ad

    related to: grain boundaries and dislocations free worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Grain boundary strengthening - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary_strengthening

    Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain

  3. Grain boundary - Wikipedia

    en.wikipedia.org/wiki/Grain_boundary

    As the grain is bent further, more and more dislocations must be introduced to accommodate the deformation resulting in a growing wall of dislocations – a low-angle boundary. The grain can now be considered to have split into two sub-grains of related crystallography but notably different orientations.

  4. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    Dislocations may be pinned due to stress field interactions with other dislocations and solute particles, creating physical barriers from second phase precipitates forming along grain boundaries. There are five main strengthening mechanisms for metals, each is a method to prevent dislocation motion and propagation, or make it energetically ...

  5. Subgrain rotation recrystallization - Wikipedia

    en.wikipedia.org/wiki/Subgrain_rotation_re...

    In metallurgy, materials science and structural geology, subgrain rotation recrystallization is recognized as an important mechanism for dynamic recrystallisation.It involves the rotation of initially low-angle sub-grain boundaries until the mismatch between the crystal lattices across the boundary is sufficient for them to be regarded as grain boundaries.

  6. Recovery (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Recovery_(metallurgy)

    As recovery proceeds these cell walls will undergo a transition towards a genuine subgrain structure. This occurs through a gradual elimination of extraneous dislocations and the rearrangement of the remaining dislocations into low-angle grain boundaries. Sub-grain formation is followed by subgrain coarsening where the average size increases ...

  7. Slip bands in metals - Wikipedia

    en.wikipedia.org/wiki/Slip_bands_in_metals

    PSB structure (adopted from [7]). Persistent slip-bands (PSBs) are associated with strain localisation due to fatigue in metals and cracking on the same plane. Transmission electron microscopy (TEM) and three-dimensional discrete dislocation dynamics (DDD [8]) simulation were used to reveal and understand dislocations type and arrangement/patterns to relate it to the sub-surface structure.

  8. Deformation mechanism - Wikipedia

    en.wikipedia.org/wiki/Deformation_mechanism

    Bulging recrystallization often occurs along boundaries of old grains at triple junctions. At high temperatures, the growing grain has a lower dislocation density than the grain(s) consumed, and the grain boundary sweeps through the neighboring grains to remove dislocations by high-temperature grain-boundary migration crystallization.

  9. Pinning points - Wikipedia

    en.wikipedia.org/wiki/Pinning_points

    Dislocations require proper lattice ordering to move through a material. At grain boundaries, there is a lattice mismatch, and every atom that lies on the boundary is uncoordinated. This stops dislocations that encounter the boundary from moving.