Ad
related to: greek geometric algebra calculator with solution
Search results
Results From The WOW.Com Content Network
Greek mathematics constitutes an important period in the history of mathematics: fundamental in respect of geometry and for the idea of formal proof. [44] Greek mathematicians also contributed to number theory , mathematical astronomy , combinatorics , mathematical physics , and, at times, approached ideas close to the integral calculus .
The Greeks created a geometric algebra where terms were represented by sides of geometric objects, [16] usually lines, that had letters associated with them, [17] and with this new form of algebra they were able to find solutions to equations by using a process that they invented, known as "the application of areas". [16] "
In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors ...
The Ancient Tradition of Geometric Problems studies the three classical problems of circle-squaring, cube-doubling, and angle trisection throughout the history of Greek mathematics, [1] [2] also considering several other problems studied by the Greeks in which a geometric object with certain properties is to be constructed, in many cases through transformations to other construction problems. [2]
A "tomahawk" is a geometric shape consisting of a semicircle and two orthogonal line segments, such that the length of the shorter segment is equal to the circle radius. Trisection is executed by leaning the end of the tomahawk's shorter segment on one ray, the circle's edge on the other, so that the "handle" (longer segment) crosses the angle ...
The 11th-century Persian mathematician Omar Khayyam saw a strong relationship between geometry and algebra and was moving in the right direction when he helped close the gap between numerical and geometric algebra [4] with his geometric solution of the general cubic equations, [5] but the decisive step came later with Descartes. [4]
Ancient Greek mathematicians are known to have solved specific instances of polynomial equations with the use of straightedge and compass constructions, which simultaneously gave a geometric proof of the solution's correctness. Once a construction was completed, the answer could be found by measuring the length of a certain line segment (or ...
Pages for logged out editors learn more. Contributions; Talk; Greek geometric algebra