Search results
Results From The WOW.Com Content Network
Segmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various ...
When only one independent variable is present, the results may look like: X < BP ==> Y = A 1.X + B 1 + R Y; X > BP ==> Y = A 2.X + B 2 + R Y; where BP is the breakpoint, Y is the dependent variable, X the independent variable, A the regression coefficient, B the regression constant, and R Y the residual of Y.
In econometrics, the seemingly unrelated regressions (SUR) [1]: 306 [2]: 279 [3]: 332 or seemingly unrelated regression equations (SURE) [4] [5]: 2 model, proposed by Arnold Zellner in (1962), is a generalization of a linear regression model that consists of several regression equations, each having its own dependent variable and potentially ...
Simple linear regression and multiple regression using least squares can be done in some spreadsheet applications and on some calculators. While many statistical software packages can perform various types of nonparametric and robust regression, these methods are less standardized.
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
A plot of normal distribution (or bell-shaped curve) where each band has a width of 1 standard deviation. If the threshold is 2 standard deviations above the mean of the latent variable, then about 2.4% of the population would have the trait.
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.