When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differential pulse voltammetry - Wikipedia

    en.wikipedia.org/wiki/Differential_pulse_voltammetry

    The system of this measurement is usually the same as that of standard voltammetry.The potential between the working electrode and the reference electrode is changed as a pulse from an initial potential to an interlevel potential and remains at the interlevel potential for about 5 to 100 milliseconds; then it changes to the final potential, which is different from the initial potential.

  3. Randles–Sevcik equation - Wikipedia

    en.wikipedia.org/wiki/Randles–Sevcik_equation

    In electrochemistry, the Randles–ŠevĨík equation describes the effect of scan rate on the peak current (i p) for a cyclic voltammetry experiment. For simple redox events where the reaction is electrochemically reversible, and the products and reactants are both soluble, such as the ferrocene/ferrocenium couple, i p depends not only on the concentration and diffusional properties of the ...

  4. Cyclic voltammetry - Wikipedia

    en.wikipedia.org/wiki/Cyclic_voltammetry

    CV can be conducted using a variety of solutions. Solvent choice for cyclic voltammetry takes into account several requirements. [1] The solvent must dissolve the analyte and high concentrations of the supporting electrolyte. It must also be stable in the potential window of the experiment with respect to the working electrode.

  5. Electroanalytical methods - Wikipedia

    en.wikipedia.org/wiki/Electroanalytical_methods

    In practice, the analyte solution is usually disposed of since it is difficult to separate the analyte from the bulk electrolyte, and the experiment requires a small amount of analyte. A normal experiment may involve 1–10 mL solution with an analyte concentration between 1 and 10 mmol/L.

  6. Electrochemical potential - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_potential

    In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...

  7. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    The upper graph shows the current density as function of the overpotential η . The anodic and cathodic current densities are shown as j a and j c, respectively for α=α a =α c =0.5 and j 0 =1mAcm −2 (close to values for platinum and palladium).

  8. Overpotential - Wikipedia

    en.wikipedia.org/wiki/Overpotential

    In electrochemistry, overpotential is the potential difference between a half-reaction's thermodynamically determined reduction potential and the potential at which the redox event is experimentally observed. [1] The term is directly related to a cell's voltage efficiency.

  9. Salt bridge - Wikipedia

    en.wikipedia.org/wiki/Salt_bridge

    In electrochemistry, a salt bridge or ion bridge is an essential laboratory device discovered over 100 years ago. [ 1 ] It contains an electrolyte solution, typically an inert solution, used to connect the oxidation and reduction half-cells of a galvanic cell (voltaic cell), a type of electrochemical cell .