When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dynamic equilibrium (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Dynamic_equilibrium

    In a simple reaction such as the isomerization: there are two reactions to consider, the forward reaction in which the species A is converted into B and the backward reaction in which B is converted into A. If both reactions are elementary reactions, then the rate of reaction is given by [3]

  3. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    Guldberg and Waage also recognized that chemical equilibrium is a dynamic process in which rates of reaction for the forward and backward reactions must be equal at chemical equilibrium. In order to derive the expression of the equilibrium constant appealing to kinetics, the expression of the rate equation must be used.

  4. Microscopic reversibility - Wikipedia

    en.wikipedia.org/wiki/Microscopic_reversibility

    In chemistry, J. H. van't Hoff (1884) [4] came up with the idea that equilibrium has dynamical nature and is a result of the balance between the forward and backward reaction rates. He did not study reaction mechanisms with many elementary reactions and could not formulate the principle of detailed balance for complex reactions.

  5. Chemical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Chemical_equilibrium

    Equality of forward and backward reaction rates, however, is a necessary condition for chemical equilibrium, though it is not sufficient to explain why equilibrium occurs. Despite the limitations of this derivation, the equilibrium constant for a reaction is indeed a constant, independent of the activities of the various species involved ...

  6. Photostationary state - Wikipedia

    en.wikipedia.org/wiki/Photostationary_state

    In a reversible photochemical reaction between compounds A and B, there will therefore be a "forwards" reaction of at a rate proportional to and a "backwards" reaction of at a rate proportional to . The ratio of the rates of the forward and backwards reactions determines where the equilibrium lies, and thus the photostationary state is found at:

  7. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    a thermodynamic equilibrium constant, denoted by , is defined to be the value of the reaction quotient Q t when forward and reverse reactions occur at the same rate. At chemical equilibrium , the chemical composition of the mixture does not change with time, and the Gibbs free energy change Δ G {\displaystyle \Delta G} for the reaction is zero.

  8. Reaction–diffusion system - Wikipedia

    en.wikipedia.org/wiki/Reaction–diffusion_system

    Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...

  9. Reversible reaction - Wikipedia

    en.wikipedia.org/wiki/Reversible_reaction

    A reversible reaction is a reaction in which the conversion of reactants to products and the conversion of products to reactants occur simultaneously. [1]+ + A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B.