Search results
Results From The WOW.Com Content Network
Also, 2 is a prime dividing 100, which immediately proves that 100 is not prime. Every positive integer except 1 is divisible by at least one prime number by the Fundamental Theorem of Arithmetic . Therefore the algorithm need only search for prime divisors less than or equal to n {\displaystyle {\sqrt {n}}} .
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
Let n be a positive integer. If there exists an integer a, 1 < a < n, such that and for every prime factor q of n − 1 / ()then n is prime. If no such number a exists, then n is either 1, 2, or composite.
Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.
The International Obfuscated C Code Contest (abbreviated IOCCC) is a computer programming contest for code written in C that is the most creatively obfuscated. Held semi-annually, it is described as "celebrating [C's] syntactical opaqueness". [1] The winning code for the 27th contest, held in 2020, was released in July 2020. [2]
This must always hold if n is prime; if not, we have found more than two square roots of −1 and proved that n is composite. This is only possible if n ≡ 1 (mod 4), and we pass probable prime tests with two or more bases a such that a d ≢ ±1 (mod n), but it is an inexpensive addition to the basic Miller-Rabin test.
A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor.
[1] [2] For example, 1193 is a circular prime, since 1931, 9311 and 3119 all are also prime. [3] A circular prime with at least two digits can only consist of combinations of the digits 1, 3, 7 or 9, because having 0, 2, 4, 6 or 8 as the last digit makes the number divisible by 2, and having 0 or 5 as the last digit makes it divisible by 5. [4]