Search results
Results From The WOW.Com Content Network
Equivalence relations are a ready source of examples or counterexamples. For example, an equivalence relation with exactly two infinite equivalence classes is an easy example of a theory which is ω-categorical, but not categorical for any larger cardinal number.
Equivalence relationships exist between exact copies of the same manifestation of a work or between an original item and reproductions of it, so long as the intellectual content and authorship are preserved. Examples include reproductions such as copies, issues, facsimiles and reprints, photocopies, and microfilms.
The study of cardinality is often called equinumerosity (equalness-of-number). The terms equipollence (equalness-of-strength) and equipotence (equalness-of-power) are sometimes used instead. Equinumerosity has the characteristic properties of an equivalence relation. [1] The statement that two sets A and B are equinumerous is usually denoted
Graph of an example equivalence with 7 classes An equivalence relation is a mathematical relation that generalizes the idea of similarity or sameness. It is defined on a set X {\displaystyle X} as a binary relation ∼ {\displaystyle \sim } that satisfies the three properties: reflexivity , symmetry , and transitivity .
The relation is an equivalence relation on the set of functions of x; the functions f and g are said to be asymptotically equivalent. The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers.
Computer science often terms this relationship an "is-a" relationship. For example, the phrase "Red is-a color" can be used to describe the hyponymic relationship between red and color . Hyponymy is the most frequently encoded relation among synsets used in lexical databases such as WordNet .
In mathematics, given a category C, a quotient of an object X by an equivalence relation: is a coequalizer for the pair of maps , =,, where R is an object in C and "f is an equivalence relation" means that, for any object T in C, the image (which is a set) of : = (,) () is an equivalence relation; that is, a reflexive, symmetric and transitive relation.
They are called "adequate" because dividing out by the equivalence relation is functorial, i.e. push-forward (with change of codimension) and pull-back of cycles is well-defined. Codimension 1 cycles modulo rational equivalence form the classical group of divisors modulo linear equivalence. All cycles modulo rational equivalence form the Chow ring.