When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.

  3. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).

  4. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    If f is meromorphic in U, then a zero of f is a pole of 1/f, and a pole of f is a zero of 1/f. This induces a duality between zeros and poles, that is fundamental for the study of meromorphic functions. For example, if a function is meromorphic on the whole complex plane plus the point at infinity, then the sum of the multiplicities of its ...

  5. Multiplicative number theory - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_number_theory

    A large part of analytic number theory deals with multiplicative problems, and so most of its texts contain sections on multiplicative number theory. These are some well-known texts that deal specifically with multiplicative problems: Davenport, Harold (2000). Multiplicative Number Theory (3rd ed.). Berlin: Springer. ISBN 978-0-387-95097-6.

  6. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The other terms also correspond to zeros: the dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see Riesel & Göhl (1970) or Zagier (1977) .

  7. 7 - Wikipedia

    en.wikipedia.org/wiki/7

    7 is the only number D for which the equation 2 n − D = x 2 has more than two solutions for n and x natural. In particular, the equation 2 n − 7 = x 2 is known as the Ramanujan–Nagell equation. 7 is one of seven numbers in the positive definite quadratic integer matrix representative of all odd numbers: {1, 3, 5, 7, 11, 15, 33}. [19] [20]

  8. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    Graph of the number of primes ending in 1, 3, 7, and 9 up to n for n < 10 000. Another example is the distribution of the last digit of prime numbers. Except for 2 and 5, all prime numbers end in 1, 3, 7, or 9. Dirichlet's theorem states that asymptotically, 25% of all primes end in each of these four digits.

  9. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Since has zeros inside the disk | | < (because >), it follows from Rouché's theorem that also has the same number of zeros inside the disk. One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity).