Search results
Results From The WOW.Com Content Network
If nothing is specified, the equation is rendered in the same display style as "block", but without using a new paragraph. If the equation does appear on a line by itself, it is not automatically indented. The sum = converges to 2. The next line-width is disturbed by large operators. Or: The sum
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
Algebraic operations in the solution to the quadratic equation. The radical sign √, denoting a square root, is equivalent to exponentiation to the power of 1 / 2 . The ± sign means the equation can be written with either a + or a – sign.
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.
Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.
Bairstow's approach is to use Newton's method to adjust the coefficients u and v in the quadratic + + until its roots are also roots of the polynomial being solved. The roots of the quadratic may then be determined, and the polynomial may be divided by the quadratic to eliminate those roots.