Ads
related to: concave up and down practice pdf problems 5th level of writing exercises
Search results
Results From The WOW.Com Content Network
Level of detail in writing, sometimes known as level of abstraction, refers to three concepts: the precision in using the right words to form phrases, clauses and sentences; [1] the generality of statements; and the organisational strategy in which authors arrange ideas according to a common topic in the hierarchy of detail.
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [ 3 ] [ 4 ] [ 5 ] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph ∪ {\displaystyle \cup } .
If the second derivative of a function changes sign, the graph of the function will switch from concave down to concave up, or vice versa. A point where this occurs is called an inflection point. Assuming the second derivative is continuous, it must take a value of zero at any inflection point, although not every point where the second ...
The following are among the properties of log-concave distributions: If a density is log-concave, so is its cumulative distribution function (CDF). If a multivariate density is log-concave, so is the marginal density over any subset of variables. The sum of two independent log-concave random variables is log-concave. This follows from the fact ...
The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...
Many optimization problems can be equivalently formulated in this standard form. For example, the problem of maximizing a concave function can be re-formulated equivalently as the problem of minimizing the convex function . The problem of maximizing a concave function over a convex set is commonly called a convex optimization problem.
Specifically, a twice-differentiable function f is concave up if ″ > and concave down if ″ <. Note that if f ( x ) = x 4 {\displaystyle f(x)=x^{4}} , then x = 0 {\displaystyle x=0} has zero second derivative, yet is not an inflection point, so the second derivative alone does not give enough information to determine whether a given point is ...
If is concave down in the interval between and , the approximation will be an overestimate (since the derivative is decreasing in that interval). If f {\displaystyle f} is concave up , the approximation will be an underestimate.