Search results
Results From The WOW.Com Content Network
al(o(ch 2 ch 2) n ch 2 ch 3) 3 +3h 2 o → al(oh) 3 + ch 3 ch 2 (ch 2 ch 2) n oh The temperature of the reaction influences the molecular weight of alcohol growth. Temperatures in the range of 60-120°C form higher molecular weight trialkylaluminium while higher temperatures (e.g., 120-150 °C) cause thermal displacement reactions that afford ...
In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne (−C≡CH) is added to a carbonyl group (C=O) to form an α-alkynyl alcohol (R 2 C(−OH)−C≡C−R). [1] [2] When the acetylide is formed from acetylene (HC≡CH), the reaction gives an α-ethynyl alcohol. This process is often referred to as ethynylation.
The traditional method of forming aldehydes without reducing to alcohols - by using hindered hydrides and reactive carbonyls - is limited by its narrow substrate scope and great dependence on reaction conditions. One workaround to avoid this method is to reduce the carboxylic acid derivative all the way down to an alcohol, then oxidize the ...
An enone forms an allylic alcohol in a 1,2-addition, and the competing conjugate 1,4-addition is suppressed. The selectivity can be explained in terms of the HSAB theory: carbonyl groups require hard nucleophiles for 1,2-addition. The hardness of the borohydride is increased by replacing hydride groups with alkoxide groups, a reaction catalyzed ...
The reaction mechanism of Corey–Kim oxidation. Under Corey–Kim conditions allylic and benzylic alcohols have a tendency to evolve to the corresponding allyl and benzyl chlorides unless the alcohol activation is very quickly followed by addition of triethylamine. In fact, Corey–Kim conditions —with no addition of triethylamine— are ...
Another side reaction is the Tischenko reaction of aldehyde products with no α-hydrogen, but this can be prevented by use of anhydrous solvents. [4] Another general side reaction is the migration of the double bond during the oxidation of allylic alcohol substrates. [14] Oppenauer oxidation of a steroid derivative. [15]
Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. [1] Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile.
The following figure shows the reaction mechanism: [2] Reaktionsmechanismus Albright-Goldman-Oxidation. First, dimethyl sulfoxide (1) reacts with acetic anhydride to form a sulfonium ion. It reacts with the primary alcohol in an addition reaction. Furthermore, acetic acid is cleaved, so that intermediate 2 is formed. The latter reacts upon ...