Search results
Results From The WOW.Com Content Network
The Quillen–Suslin theorem, which solves Serre's problem, is another deep result: if K is a field, or more generally a principal ideal domain, and R = K[X 1,...,X n] is a polynomial ring over K, then every projective module over R is free. This problem was first raised by Serre with K a field (and the modules being finitely generated).
In mathematics, a corollary is a theorem connected by a short proof to an existing theorem. The use of the term corollary, rather than proposition or theorem, is intrinsically subjective. More formally, proposition B is a corollary of proposition A, if B can be readily deduced from A or is self-evident from its proof.
Subsequent work to resolve these problems shaped the direction of mathematical logic, as did the effort to resolve Hilbert's Entscheidungsproblem, posed in 1928. This problem asked for a procedure that would decide, given a formalized mathematical statement, whether the statement is true or false.
Pre-algebra is a common name for a course taught in middle school mathematics in the United States, usually taught in the 6th, 7th, 8th, or 9th grade. [1] The main objective of it is to prepare students for the study of algebra. Usually, Algebra I is taught in the 8th or 9th grade. [2]
The following corollary is also known as Nakayama's lemma, and it is in this form that it most often appears. [ 4 ] Statement 3 : If M {\displaystyle M} is a finitely generated module over R {\displaystyle R} , J ( R ) {\displaystyle J(R)} is the Jacobson radical of R {\displaystyle R} , and J ( R ) M = M {\displaystyle J(R)M=M} , then M = 0 ...
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...
A porism is a mathematical proposition or corollary. It has been used to refer to a direct consequence of a proof, analogous to how a corollary refers to a direct consequence of a theorem. In modern usage, it is a relationship that holds for an infinite range of values but only if a certain condition is assumed, such as Steiner's porism. [1]
In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables.