Search results
Results From The WOW.Com Content Network
Luminous intensity, a photometric quantity measured in lumens per steradian (lm/sr), or candela (cd) Irradiance, a radiometric quantity, measured in watts per square meter (W/m 2) Intensity (physics), the name for irradiance used in other branches of physics (W/m 2) Radiance, commonly called "intensity" in astronomy and astrophysics (W·sr −1 ...
Luminous intensity is the perceived power per unit solid angle. If a lamp has a 1 lumen bulb and the optics of the lamp are set up to focus the light evenly into a 1 steradian beam, then the beam would have a luminous intensity of 1 candela. If the optics were changed to concentrate the beam into 1/2 steradian then the source would have a ...
Intensity is used most frequently with waves such as acoustic waves , matter waves such as electrons in electron microscopes, and electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied
intensity from polarized light, Malus's law: I 0 = Initial intensity, I = Transmitted intensity, ... Kirchhoff's diffraction formula = ...
German astronomer Johannes Kepler discussed the inverse-square law and how it affects the intensity of light. In proposition 9 of Book 1 in his book Ad Vitellionem paralipomena, quibus astronomiae pars optica traditur (1604), the astronomer Johannes Kepler argued that the spreading of light from a point source obeys an inverse square law: [15] [16]
Power (intensity) reflection and transmission coefficients ... In the above formula for r s, if we put = ... J.Z. Buchwald, 1989, The Rise of the Wave Theory of Light
Therefore, two sources of light which produce the same intensity (W/m 2) of visible light do not necessarily appear equally bright. The photometry units are designed to take this into account and therefore are a better representation of how "bright" a light appears to be than raw intensity.
The intensity of the light emitted from the blackbody surface is given by Planck's law, (,) = / (), where I ( ν , T ) {\displaystyle I(\nu ,T)} is the amount of power per unit surface area per unit solid angle per unit frequency emitted at a frequency ν {\displaystyle \nu } by a black body at temperature T .