Search results
Results From The WOW.Com Content Network
Steffensen's method accelerates this convergence, to make it quadratic. For orientation, the root function and the fixed-point functions are simply related by = + , where is some scalar constant small enough in magnitude to make stable under iteration, but large enough for the non-linearity of the function to be appreciable.
Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.
Bairstow's approach is to use Newton's method to adjust the coefficients u and v in the quadratic + + until its roots are also roots of the polynomial being solved. The roots of the quadratic may then be determined, and the polynomial may be divided by the quadratic to eliminate those roots.
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The following is an example of a possible implementation of Newton's method in the Python (version 3.x) programming language for finding a root of a function f which has derivative f_prime. The initial guess will be x 0 = 1 and the function will be f ( x ) = x 2 − 2 so that f ′ ( x ) = 2 x .
Modern improvements on Brent's method include Chandrupatla's method, which is simpler and faster for functions that are flat around their roots; [3] [4] Ridders' method, which performs exponential interpolations instead of quadratic providing a simpler closed formula for the iterations; and the ITP method which is a hybrid between regula-falsi ...
The Tonelli–Shanks algorithm (referred to by Shanks as the RESSOL algorithm) is used in modular arithmetic to solve for r in a congruence of the form r 2 ≡ n (mod p), where p is a prime: that is, to find a square root of n modulo p.