When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    A rising point of inflection is a point where the derivative is positive on both sides of the point; in other words, it is an inflection point near which the function is increasing. For a smooth curve given by parametric equations , a point is an inflection point if its signed curvature changes from plus to minus or from minus to plus, i.e ...

  3. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The x-coordinates of the red circles are stationary points; the blue squares are inflection points. In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a critical value. [1]

  4. Elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve

    Lastly, If P is an inflection point (a point where the concavity of the curve changes), we take R to be P itself and P + P is simply the point opposite itself, i.e. itself. Let K be a field over which the curve is defined (that is, the coefficients of the defining equation or equations of the curve are in K ) and denote the curve by E .

  5. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is a bounded, differentiable, real function that is defined for all real input values and has a non-negative derivative at each point [1] [2] and exactly one inflection point. Properties

  6. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.

  7. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.

  8. Cusp (singularity) - Wikipedia

    en.wikipedia.org/wiki/Cusp_(singularity)

    For example, rhamphoid cusps occur for inflection points (and for undulation points) for which the tangent is parallel to the direction of projection. In many cases, and typically in computer vision and computer graphics, the curve that is projected is the curve of the critical points of the restriction to a (smooth) spatial object of the ...

  9. Linear approximation - Wikipedia

    en.wikipedia.org/wiki/Linear_approximation

    Linear approximations in this case are further improved when the second derivative of a, ″ (), is sufficiently small (close to zero) (i.e., at or near an inflection point). If f {\displaystyle f} is concave down in the interval between x {\displaystyle x} and a {\displaystyle a} , the approximation will be an overestimate (since the ...