When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Radon transform - Wikipedia

    en.wikipedia.org/wiki/Radon_transform

    Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.

  3. Projection-slice theorem - Wikipedia

    en.wikipedia.org/wiki/Projection-slice_theorem

    Take a two-dimensional function f(r), project (e.g. using the Radon transform) it onto a (one-dimensional) line, and do a Fourier transform of that projection. Take that same function, but do a two-dimensional Fourier transform first, and then slice it through its origin, which is parallel to the projection line. In operator terms, if

  4. Funk transform - Wikipedia

    en.wikipedia.org/wiki/Funk_transform

    In the mathematical field of integral geometry, the Funk transform (also known as Minkowski–Funk transform, Funk–Radon transform or spherical Radon transform) is an integral transform defined by integrating a function on great circles of the sphere. It was introduced by Paul Funk in 1911, based on the work of Minkowski (1904).

  5. Integral geometry - Wikipedia

    en.wikipedia.org/wiki/Integral_geometry

    It deals more specifically with integral transforms, modeled on the Radon transform. Here the underlying geometrical incidence relation (points lying on lines, in Crofton's case) is seen in a freer light, as the site for an integral transform composed as pullback onto the incidence graph and then push forward.

  6. Tomographic reconstruction - Wikipedia

    en.wikipedia.org/wiki/Tomographic_reconstruction

    In practice of tomographic image reconstruction, often a stabilized and discretized version of the inverse Radon transform is used, known as the filtered back projection algorithm. [ 2 ] With a sampled discrete system, the inverse Radon transform is

  7. Log-polar coordinates - Wikipedia

    en.wikipedia.org/wiki/Log-polar_coordinates

    Log-polar coordinates in the plane consist of a pair of real numbers (ρ,θ), where ρ is the logarithm of the distance between a given point and the origin and θ is the angle between a line of reference (the x-axis) and the line through the origin and the point.

  8. Crofton formula - Wikipedia

    en.wikipedia.org/wiki/Crofton_formula

    Because, again, the formula is additive over concatenation of line segments, the integral must be a constant times the length of the line segment. It remains only to determine the factor of 1/4; this is easily done by computing both sides when γ is the unit circle. The proof for the generalized version proceeds exactly as above.

  9. Radon's theorem - Wikipedia

    en.wikipedia.org/wiki/Radon's_theorem

    The Radon point of any four points in the plane is their geometric median, the point that minimizes the sum of distances to the other points. [5] [6] Radon's theorem forms a key step of a standard proof of Helly's theorem on intersections of convex sets; [7] this proof was the motivation for Radon's original discovery of Radon's theorem.