Search results
Results From The WOW.Com Content Network
In mathematics, a square triangular number (or triangular square number) is a number which is both a triangular number and a square number. There are infinitely many square triangular numbers; the first few are:
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From Gulley (2010).The n th coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the n th region is n times n × n.
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. This shows that the square of the n th triangular number is equal to the sum of the first n cube numbers. Also, the square of the n th triangular number is the same as the sum of the cubes of the integers 1 to n.
The number 9, on the other hand, can be (see square number): Some numbers, like 36, can be arranged both as a square and as a triangle (see square triangular number ): By convention, 1 is the first polygonal number for any number of sides.
The Heesch number of the square is infinite and the Heesch number of the circle is zero. In more complicated examples, such as the one shown in the illustration, a polygonal tile can be surrounded by several layers, but not by infinitely many; the maximum number of layers is the tile's Heesch number.
Geometric representation of the square pyramidal number 1 + 4 + 9 + 16 = 30. A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. [1] The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2]
If a square mesh has n + 1 points (vertices) per side, there are n squared squares in the mesh, or 2n squared triangles since there are two triangles in a square. There are (n + 1) 2 / 2(n 2) vertices per triangle. Where n is large, this approaches one half. Or, each vertex inside the square mesh connects four edges (lines).
All four sides of a square are equal. Opposite sides of a square are parallel. A square has Schläfli symbol {4}. A truncated square, t{4}, is an octagon, {8}. An alternated square, h{4}, is a digon, {2}. The square is the n = 2 case of the families of n-hypercubes and n-orthoplexes.