When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Statistical risk - Wikipedia

    en.wikipedia.org/wiki/Statistical_risk

    Statistical risk is a quantification of a situation's risk using statistical methods.These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of ...

  3. Relative risk - Wikipedia

    en.wikipedia.org/wiki/Relative_risk

    The group exposed to treatment (left) has half the risk (RR = 4/8 = 0.5) of an adverse outcome (black) compared to the unexposed group (right). The relative risk (RR) or risk ratio is the ratio of the probability of an outcome in an exposed group to the probability

  4. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  5. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    Two or more statistical models may be compared using their MSEs—as a measure of how well they explain a given set of observations: An unbiased estimator (estimated from a statistical model) with the smallest variance among all unbiased estimators is the best unbiased estimator or MVUE (Minimum-Variance Unbiased Estimator).

  6. Minimax estimator - Wikipedia

    en.wikipedia.org/wiki/Minimax_estimator

    An example is shown on the left. The parameter space has just two elements and each point on the graph corresponds to the risk of a decision rule: the x-coordinate is the risk when the parameter is and the y-coordinate is the risk when the parameter is . In this decision problem, the minimax estimator lies on a line segment connecting two ...

  7. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.

  8. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    The sole minimizer of the expected risk, , associated with the above generated loss functions can be directly found from equation (1) and shown to be equal to the corresponding (). This holds even for the nonconvex loss functions, which means that gradient descent based algorithms such as gradient boosting can be used to construct the minimizer.

  9. Bayes estimator - Wikipedia

    en.wikipedia.org/wiki/Bayes_estimator

    The Bayes risk of ^ is defined as ((, ^)), where the expectation is taken over the probability distribution of : this defines the risk function as a function of ^. An estimator θ ^ {\displaystyle {\widehat {\theta }}} is said to be a Bayes estimator if it minimizes the Bayes risk among all estimators.