When.com Web Search

  1. Ads

    related to: solving nonlinear functions pdf examples free

Search results

  1. Results From The WOW.Com Content Network
  2. Nonlinear programming - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_programming

    If the objective function is quadratic and the constraints are linear, quadratic programming techniques are used. If the objective function is a ratio of a concave and a convex function (in the maximization case) and the constraints are convex, then the problem can be transformed to a convex optimization problem using fractional programming ...

  3. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    These equations describe boundary-value problems, in which the solution-function's values are specified on boundary of a domain; the problem is to compute a solution also on its interior. Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [2 ...

  4. Newton–Krylov method - Wikipedia

    en.wikipedia.org/wiki/Newton–Krylov_method

    The Jacobian itself might be too difficult to compute, but the GMRES method does not require the Jacobian itself, only the result of multiplying given vectors by the Jacobian. Often this can be computed efficiently via difference formulae. Solving the Newton iteration formula in this manner, the result is a Jacobian-Free Newton-Krylov (JFNK ...

  5. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...

  6. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  7. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    The power series method can be applied to certain nonlinear differential equations, though with less flexibility. A very large class of nonlinear equations can be solved analytically by using the Parker–Sochacki method. Since the Parker–Sochacki method involves an expansion of the original system of ordinary differential equations through ...

  8. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Fractional programming — objective is ratio of nonlinear functions, constraints are linear; Nonlinear complementarity problem (NCP) — find x such that x ≥ 0, f(x) ≥ 0 and x T f(x) = 0; Least squares — the objective function is a sum of squares Non-linear least squares; Gauss–Newton algorithm. BHHH algorithm — variant of Gauss ...