When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90°. Hence, the cube has six faces, twelve edges, and eight vertices.

  3. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.

  4. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x 3 = 2; in other words, x = , the cube root of two. This is because a cube of side length 1 has a volume of 1 3 = 1 , and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2.

  5. Truncation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Truncation_(geometry)

    Shallow truncation - Edges are reduced in length, faces are truncated to have twice as many sides, while new facets are formed, centered at the old vertices. Uniform truncation are a special case of this with equal edge lengths. The truncated cube, t{4,3}, with square faces becoming octagons, with new triangular faces are the vertices.

  6. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    [2] Three mutually perpendicular golden ratio rectangles, with edges connecting their corners, form a regular icosahedron. Another way to construct it is by putting two points on each surface of a cube. In each face, draw a segment line between the midpoints of two opposite edges and locate two points with the golden ratio distance from each ...

  7. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    This group has six mirror planes, each containing two edges of the cube or one edge of the tetrahedron, a single S 4 axis, and two C 3 axes. T d is isomorphic to S 4, the symmetric group on 4 letters, because there is a 1-to-1 correspondence between the elements of T d and the 24 permutations of the four 3-fold axes.

  8. Dual polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_polyhedron

    The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]

  9. Cissoid of Diocles - Wikipedia

    en.wikipedia.org/wiki/Cissoid_of_Diocles

    Cissoid of Diocles traced by points M with ¯ = ¯ Animation visualizing the Cissoid of Diocles. In geometry, the cissoid of Diocles (from Ancient Greek κισσοειδής (kissoeidēs) 'ivy-shaped'; named for Diocles) is a cubic plane curve notable for the property that it can be used to construct two mean proportionals to a given ratio.