When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    The hyperbolic plane is a plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.

  3. Hyperboloid - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid

    hyperboloid of two sheets: generation by rotating a hyperbola hyperboloid of two sheets: plane sections. The hyperboloid of two sheets does not contain lines. The discussion of plane sections can be performed for the unit hyperboloid of two sheets with equation : + = which can be generated by a rotating hyperbola around one of its axes (the one ...

  4. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups. The quotient space H 2 ‍ / ‍ Γ of the upper half-plane modulo the fundamental group is known as the Fuchsian model of the hyperbolic surface. The Poincaré half plane is also hyperbolic, but is simply ...

  5. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used. This article tries to give an overview of several coordinate systems in use for the two-dimensional hyperbolic plane. In the descriptions below the constant Gaussian curvature of the plane is −1. Sinh, cosh and tanh are hyperbolic functions.

  6. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...

  7. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).

  8. Ruled surface - Wikipedia

    en.wikipedia.org/wiki/Ruled_surface

    The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces. The plane is the only surface which contains at least three distinct lines through each of its points (Fuchs & Tabachnikov 2007). The properties of being ruled or doubly ruled are preserved by projective maps, and therefore are concepts of projective geometry.

  9. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    The hyperbolic plane (and more generally any Hadamard manifolds of sectional curvature) is -hyperbolic. If we scale the Riemannian metric by a factor λ > 0 {\displaystyle \lambda >0} then the distances are multiplied by λ {\displaystyle \lambda } and thus we get a space that is λ ⋅ δ {\displaystyle \lambda \cdot \delta } -hyperbolic.