When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fructose 1,6-bisphosphatase - Wikipedia

    en.wikipedia.org/wiki/Fructose_1,6-bisphosphatase

    Fructose 1,6-bisphosphate aldolase is another temperature dependent enzyme that plays an important role in the regulation of glycolysis and gluconeogenesis during hibernation. [14] Its main role is in glycolysis instead of gluconeogenesis, but its substrate is the same as FBPase's, so its activity affects that of FBPase in gluconeogenesis.

  3. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glucose regulation and product use are the primary categories in which these pathways differ between organisms. [2] In some tissues and organisms, glycolysis is the sole method of energy production. [2] This pathway is common to both anaerobic and aerobic respiration. [1] Glycolysis consists of ten steps, split into two phases. [2]

  4. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    The result of lower levels of liver F2,6BP is a decrease in activity of phosphofructokinase and an increase in activity of fructose 1,6-bisphosphatase, so that gluconeogenesis (in essence, "glycolysis in reverse") is favored. This is consistent with the role of the liver in such situations, since the response of the liver to these hormones is ...

  5. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    [10]: 578–579 A catabolic pathway is an exergonic system that produces chemical energy in the form of ATP, GTP, NADH, NADPH, FADH2, etc. from energy containing sources such as carbohydrates, fats, and proteins. The end products are often carbon dioxide, water, and ammonia.

  6. Phosphofructokinase 1 - Wikipedia

    en.wikipedia.org/wiki/Phosphofructokinase_1

    However, there is substrate cycling between F6P and F-1,6-BP. Fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of F-1,6-BP back to F6P, the reverse reaction catalyzed by PFK1. There is a small amount of FBPase activity during glycolysis and some PFK1 activity during gluconeogenesis.

  7. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Oxidative phosphorylation contributes the majority of the ATP produced, compared to glycolysis and the Krebs cycle. While the ATP count is glycolysis and the Krebs cycle is two ATP molecules, the electron transport chain contributes, at most, twenty-eight ATP molecules. A contributing factor is due to the energy potentials of NADH and FADH 2.

  8. Glucose 6-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glucose_6-phosphate

    The addition of the second phosphoryl group to produce fructose 1,6-bisphosphate is an irreversible step, and so is used to irreversibly target the glucose 6-phosphate breakdown to provide energy for ATP production via glycolysis. Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

  9. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Anaerobic system – This system predominates in supplying energy for intense exercise lasting less than two minutes. It is also known as the glycolytic system. An example of an activity of the intensity and duration that this system works under would be a 400 m sprint. Aerobic system – This is the long-duration energy system.

  1. Related searches difference between glycolysis and gluconeogenesis energy system water levels

    difference between glycolysis and glucosephosphoglycerate kinase glycolysis
    glycogenolysis and liver functionglycogenolysis and liver failure