Search results
Results From The WOW.Com Content Network
XGBoost [2] (eXtreme Gradient Boosting) is an open-source software library which provides a regularizing gradient boosting framework for C++, Java, Python, [3] R, [4] Julia, [5] Perl, [6] and Scala. It works on Linux , Microsoft Windows , [ 7 ] and macOS . [ 8 ]
LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...
It provides a gradient boosting framework which, among other features, attempts to solve for categorical features using a permutation-driven alternative to the classical algorithm. [7] It works on Linux , Windows , macOS , and is available in Python , [ 8 ] R , [ 9 ] and models built using CatBoost can be used for predictions in C++ , Java ...
Gradient boosting is a machine learning technique based on boosting in a functional space, where the target is pseudo-residuals instead of residuals as in traditional boosting. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple ...
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
scikit-learn, an open source machine learning library for Python; Orange, a free data mining software suite, module Orange.ensemble; Weka is a machine learning set of tools that offers variate implementations of boosting algorithms like AdaBoost and LogitBoost
In the gradient descent analogy, the output of the classifier for each training point is considered a point ((), …, ()) in n-dimensional space, where each axis corresponds to a training sample, each weak learner () corresponds to a vector of fixed orientation and length, and the goal is to reach the target point (, …,) (or any region where ...
It is shown that this is directly equivalent to decreasing the learning rate in gradient boosting = + (), where decreasing improves the regularization of the boosted classifier. The theory makes it clear that when a learning rate of γ {\displaystyle \gamma } is used, the correct formula for retrieving the posterior probability is now η = f ...