When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form () (,), where < (), < and the integrands are functions dependent on , the derivative of this integral is expressible as (() (,)) = (, ()) (, ()) + () (,) where the partial derivative indicates that inside the integral, only the ...

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  4. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  5. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Nevertheless, Newton and Leibniz remain key figures in the history of differentiation, not least because Newton was the first to apply differentiation to theoretical physics, while Leibniz systematically developed much of the notation still used today. Since the 17th century many mathematicians have contributed to the theory of differentiation.

  6. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  7. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Leibniz developed much of the notation used in calculus today. [31]: 51–52 The basic insights that both Newton and Leibniz provided were the laws of differentiation and integration, emphasizing that differentiation and integration are inverse processes, second and higher derivatives, and the notion of an approximating polynomial series.

  8. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    The general Leibniz rule, [45] named after Gottfried Wilhelm Leibniz, generalizes the product rule (which is also known as "Leibniz's rule"). It states that if f {\displaystyle f} and g {\displaystyle g} are n {\displaystyle n} -times differentiable functions , then the product f g {\displaystyle fg} is also n {\displaystyle n} -times ...

  9. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    Leibniz's notation for differentiation does not require assigning meaning to symbols such as dx or dy (known as differentials) on their own, and some authors do not attempt to assign these symbols meaning. [1] Leibniz treated these symbols as infinitesimals. Later authors have assigned them other meanings, such as infinitesimals in non-standard ...