When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Zero-velocity surface - Wikipedia

    en.wikipedia.org/wiki/Zero-velocity_surface

    That is, the particle will not be able to cross over this surface (since the squared velocity would have to become negative). This is the zero-velocity surface of the problem. [4] Note that this means zero velocity in the rotating frame: in a non-rotating frame the particle is seen as rotating with the other bodies.

  3. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force (F d) and the buoyancy is equal to the downward force of gravity (F G ...

  4. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).

  5. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    Everything in the universe can be considered to be in motion. [2]: 20–21 Motion applies to various physical systems: objects, bodies, matter particles, matter fields, radiation, radiation fields, radiation particles, curvature, and space-time. One can also speak of the motion of images, shapes, and boundaries.

  6. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    All frames of reference with zero acceleration are in a state of constant rectilinear motion (straight-line motion) with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's first law of motion holds. Such frames are known as inertial.

  7. Rigid body - Wikipedia

    en.wikipedia.org/wiki/Rigid_body

    In physics, a rigid body, also known as a rigid object, [2] is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.

  8. Length contraction - Wikipedia

    en.wikipedia.org/wiki/Length_contraction

    An observer at rest observing an object travelling very close to the speed of light would observe the length of the object in the direction of motion as very near zero. Then, at a speed of 13 400 000 m/s (30 million mph, 0.0447 c ) contracted length is 99.9% of the length at rest; at a speed of 42 300 000 m/s (95 million mph, 0.141 c ), the ...

  9. Frictionless plane - Wikipedia

    en.wikipedia.org/wiki/Frictionless_plane

    m = mass of object g = acceleration due to gravity θ = angle of elevation of the plane, measured from the horizontal. The frictionless plane is a concept from the writings of Galileo Galilei. In his 1638 The Two New Sciences, [1] Galileo presented a formula that predicted the motion of an object moving down an inclined plane.