Search results
Results From The WOW.Com Content Network
The material derivative is defined for any tensor field y that is macroscopic, with the sense that it depends only on position and time coordinates, y = y(x, t): +, where ∇y is the covariant derivative of the tensor, and u(x, t) is the flow velocity.
The derivative of a field with respect to a fixed position in space is called the Eulerian derivative, while the derivative following a moving parcel is called the advective or material (or Lagrangian [2]) derivative. The material derivative is defined as the linear operator:
There are many alternatives to the classical calculus of Newton and Leibniz; for example, each of the infinitely many non-Newtonian calculi. [1] Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea.
where D / Dt is the material derivative operator, u is the flow velocity, ρ is the local fluid density, p is the local pressure, τ is the viscous stress tensor and B represents the sum of the external body forces. The first source term on the right hand side represents vortex stretching.
The Lagrangian and Eulerian specifications of the kinematics and dynamics of the flow field are related by the material derivative (also called the Lagrangian derivative, convective derivative, substantial derivative, or particle derivative). [1] Suppose we have a flow field u, and we are also given a generic field with Eulerian specification F ...
Here are some formulas for conformal changes in tensors associated with the metric. (Quantities marked with a tilde will be associated with g ~ {\displaystyle {\tilde {g}}} , while those unmarked with such will be associated with g {\displaystyle g} .)
For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations: = = + where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by: = (+) + The energy of a unit volume of the fluid is the sum of the kinetic energy / and the internal energy ...
The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2. A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4. R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12– 13. ISBN 978-0-07-025734-4.