When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two component rotations. He derived this formula in 1840 (see page 408). [3] The three rotation axes A, B, and C form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the rotation ...

  3. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The Haar measure for SO(3) in Euler angles is given by the Hopf angle parametrisation of SO(3), ⁡, [5] where (,) parametrise , the space of rotation axes. For example, to generate uniformly randomized orientations, let α and γ be uniform from 0 to 2 π , let z be uniform from −1 to 1, and let β = arccos( z ) .

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The trace of a rotation matrix is equal to the sum of its eigenvalues. For n = 2, a rotation by angle θ has trace 2 cos θ. For n = 3, a rotation around any axis by angle θ has trace 1 + 2 cos θ. For n = 4, and the trace is 2(cos θ + cos φ), which becomes 4 cos θ for an isoclinic rotation.

  5. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A spatial rotation is a linear map in one-to-one correspondence with a 3 × 3 rotation matrix R that transforms a coordinate vector x into X, that is Rx = X. Therefore, another version of Euler's theorem is that for every rotation R , there is a nonzero vector n for which Rn = n ; this is exactly the claim that n is an eigenvector of R ...

  6. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    3×4-fold, 4×3-fold, and 6×2-fold axes: the rotation group O of order 24 of a cube and a regular octahedron. The group is isomorphic to symmetric group S 4. 6×5-fold, 10×3-fold, and 15×2-fold axes: the rotation group I of order 60 of a dodecahedron and an icosahedron. The group is isomorphic to alternating group A 5.

  7. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation has two angles of rotation, one for each plane of rotation, through which points in the planes rotate. If these are ω 1 and ω 2 then all points not in the planes rotate through an angle between ω 1 and ω 2. Rotations in four dimensions about a fixed point have six degrees of freedom.

  8. Angular displacement - Wikipedia

    en.wikipedia.org/wiki/Angular_displacement

    Figure 2: A rotation represented by an Euler axis and angle. In three dimensions, angular displacement is an entity with a direction and a magnitude. The direction specifies the axis of rotation, which always exists by virtue of the Euler's rotation theorem ; the magnitude specifies the rotation in radians about that axis (using the right-hand ...

  9. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...