Search results
Results From The WOW.Com Content Network
Integration, the process of computing an integral, is one of the two fundamental operations of calculus, [a] the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide ...
The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = x n. Traditionally important cases are y = x 2 , the quadrature of the parabola , known in antiquity, and y = 1/ x , the quadrature of the hyperbola , whose value is a logarithm .
To estimate the area under a curve the trapezoid rule is applied first to one-piece, then two, then four, and so on. One-piece. Note since it starts and ends at zero, this approximation yields zero area. Two-piece Four-piece Eight-piece. After trapezoid rule estimates are obtained, Richardson extrapolation is applied.
The term "numerical integration" first appears in 1915 in the publication A Course in Interpolation and Numeric Integration for the Mathematical Laboratory by David Gibb. [2] "Quadrature" is a historical mathematical term that means calculating area. Quadrature problems have served as one of the main sources of mathematical analysis.
Taking an example, the area under the curve y = x 2 over [0, 2] can be procedurally computed using Riemann's method. The interval [0, 2] is firstly divided into n subintervals, each of which is given a width of 2 n {\displaystyle {\tfrac {2}{n}}} ; these are the widths of the Riemann rectangles (hereafter "boxes").
The function f(x) (in blue) is approximated by a linear function (in red). In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: ().
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.
The integral of a positive real function f between boundaries a and b can be interpreted as the area under the graph of f, between a and b.This notion of area fits some functions, mainly piecewise continuous functions, including elementary functions, for example polynomials.