When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Erdős–Gallai theorem - Wikipedia

    en.wikipedia.org/wiki/Erdős–Gallai_theorem

    The Erdős–Gallai theorem is a result in graph theory, a branch of combinatorial mathematics.It provides one of two known approaches to solving the graph realization problem, i.e. it gives a necessary and sufficient condition for a finite sequence of natural numbers to be the degree sequence of a simple graph.

  3. Graph factorization - Wikipedia

    en.wikipedia.org/wiki/Graph_factorization

    Again, G is 1-factorable. Chetwynd & Hilton (1985) show that if k ≥ 12n/7, then G is 1-factorable. The 1-factorization conjecture [3] is a long-standing conjecture that states that k ≈ n is sufficient. In precise terms, the conjecture is: If n is odd and k ≥ n, then G is 1-factorable. If n is even and k ≥ n − 1 then G is 1-factorable.

  4. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  5. Petersen's theorem - Wikipedia

    en.wikipedia.org/wiki/Petersen's_theorem

    Then by the Tutte theorem G contains a perfect matching. Let G i be a component with an odd number of vertices in the graph induced by the vertex set V − U. Let V i denote the vertices of G i and let m i denote the number of edges of G with one vertex in V i and one vertex in U. By a simple double counting argument we have that

  6. Maximum cardinality matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_cardinality_matching

    Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this ...

  7. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    [1] [2] A function f : X → Y between topological spaces has a closed graph if its graph is a closed subset of the product space X × Y. A related property is open graph. [3] This property is studied because there are many theorems, known as closed graph theorems, giving conditions under which a function with a closed graph is necessarily ...

  8. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    Theorem [7] [8] — A linear map between two F-spaces (e.g. Banach spaces) is continuous if and only if its graph is closed. The theorem is a consequence of the open mapping theorem ; see § Relation to the open mapping theorem below (conversely, the open mapping theorem in turn can be deduced from the closed graph theorem).

  9. Highly irregular graph - Wikipedia

    en.wikipedia.org/wiki/Highly_irregular_graph

    H(n)/G(n) goes to 0 as n goes to infinity exponentially rapidly, where H(n) is the number of (non-isomorphic) highly irregular graphs with n vertices, and G(n) is the total number of graphs with n vertices. [3] For every graph G, there exists a highly irregular graph H containing G as an induced subgraph. [3] This last observation can be ...