Search results
Results From The WOW.Com Content Network
For example, in geometry, two linearly independent vectors span a plane. To express that a vector space V is a linear span of a subset S, one commonly uses one of the following phrases: S spans V; S is a spanning set of V; V is spanned or generated by S; S is a generator set or a generating set of V.
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .
The columns of A span the column space, but they may not form a basis if the column vectors are not linearly independent. Fortunately, elementary row operations do not affect the dependence relations between the column vectors. This makes it possible to use row reduction to find a basis for the column space. For example, consider the matrix
Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G. The span of G is also the set of all linear combinations of elements of G.
A set of vectors is linearly independent if none is in the span of the others. Equivalently, a set S of vectors is linearly independent if the only way to express the zero vector as a linear combination of elements of S is to take zero for every coefficient a i. A set of vectors that spans a vector space is called a spanning set or generating set.
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
If the vectors v 1, ... , v k have n components, then their span is a subspace of K n. Geometrically, the span is the flat through the origin in n-dimensional space determined by the points v 1, ... , v k. Example The xz-plane in R 3 can be parameterized by the equations =, =, =.
It follows that x is in the kernel of A, if and only if x is orthogonal (or perpendicular) to each of the row vectors of A (since orthogonality is defined as having a dot product of 0). The row space, or coimage, of a matrix A is the span of the row vectors of A. By the above reasoning, the kernel of A is the orthogonal complement to the row space.