Search results
Results From The WOW.Com Content Network
The TICO codec, an abbreviation for "Tiny Codec," [1] is a video compression technology created to facilitate the transmission of high-resolution video over existing network infrastructures, including both IP networks and SDI infrastructures, the result appears visually lossless. TICO codec was represented in 2013 by the Belgian company intoPIX.
Visually transparent compression: XS compressed content is indistinguishable from the original uncompressed content (passing ISO/IEC 29170-2 tests) for compression ratios between 2:1 and 10:1. Low latency : The total end-to-end latency, introduced by the JPEG XS compression-decompression cycle, is minimal.
TTA – Lossless compression; WavPack – Hybrid lossy/lossless; Bonk – Hybrid lossy/lossless; supported by fre:ac (formerly BonkEnc) Apple Lossless – Lossless compression (MP4) Fraunhofer FDK AAC – Lossy compression (AAC) FFmpeg codecs in the libavcodec library, e.g. AC-3, AAC, ADPCM, PCM, Apple Lossless, FLAC, WMA, Vorbis, MP2, etc.
1.2 Lossless compression. ... 3.3 Lossless video compression. ... Harmonic and Individual Lines and Noise (HILN, MPEG-4 Parametric Audio Coding)
Lagarith is an open source lossless video codec written by Ben Greenwood. [1] It is a fork of the code of HuffYUV and offers better compression at the cost of greatly reduced speed on uniprocessor systems. [2] [3] Lagarith was designed and written with a few aims in mind: Speed
Huffyuv (or HuffYUV) is a lossless video codec created by Ben Rudiak-Gould which is meant to replace uncompressed YCbCr as a video capture format. The codec can also compress in the RGB color space. "Lossless" means that the output from the decompressor is bit-for-bit identical with the original input to the compressor.
The quality the codec can achieve is heavily based on the compression format the codec uses. A codec is not a format, and there may be multiple codecs that implement the same compression specification – for example, MPEG-1 codecs typically do not achieve quality/size ratio comparable to codecs that implement the more modern H.264 specification.
DSC compression works on a horizontal line of pixels encoded using groups of three consecutive pixels for native 4:4:4 and simple 4:2:2 formats, or six pixels (three compressed containers) for native 4:2:2 and 4:2:0 formats. [7] Preprocessing: If RGB encoding is used, it is first converted to reversible YC G C O.